background image

SOCKET PRESERVATION- “HEALER OF THE 

EMPTY SOCKET”- AN OVERVIEW

Dr.Dhwani. K .Dedhia, Dr.Vijayalakshmi.R, Dr.Jaideep Mahendra, Dr. Burnice Nalina Kumari.C

Department of Periodontology, Faculty of Dentistry, 

Meenakshi Academy of Higher Education and Research Institute, Chennai, Tamil Nadu, India.

JIDAM

“An Official Journal of IDA - Madras

Branch”©2019.

Available online

   

To access & cite this article  

 Website: jidam.idamadras.com

ABSTRACT

Extraction is indicated when a tooth cannot be restored or 

maintained in acceptable conditions for function and/or esthetics. 

Following tooth extraction, alveolar bone loss and structural and 

compositional changes of the covering soft tissues, as well as 

morphological alterations takes place. The repair process results 

in marked changes in the height and width of  the alveolar 

ridge with an average of 0.7-1.5mm of vertical and 4.0-4.5mm 

of horizontal bone resorption which may lead to difficulties at 

the time of implant placement. This lead to a technique called 

‘Socket Preservation’, also known as alveolar ridge preservation. 

This procedure reduces bone loss after tooth extraction to 

preserve the tooth socket in the alveolar bone. The goal of 

socket preservation is maintenance or enhancement of facial, 

interproximal gingival contours and height of interproximal 

papilla. Various materials and procedures are used for socket 

preservation. Some of them are: connective tissue grafts, free 

gingival graft, biocol, alloderm, prosthetic “pontic” socket plug, 

autologous fibrin concentrates, GTR membranes and bone graft 

materials like autografts, allografts, xenografts and alloplast. 

Thus, socket preservation at the time of extraction is one of 

the most significant procedures in the periodontal paradigm for 

maintenance of health, youth and beauty.

KEYWORDS: 

Socket preservation, Extraction sockets, 

Alveolar bone remodeling, GTR, GBR. 

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

50

Address for correspondence:

Dr.Vijayalakshmi.R, MDS
Associate Professor,
Department of Periodontology, 
Faculty of Dentistry, 
Meenakshi Academy of Higher Education 
and Research Institute,
Chennai, Tamil Nadu, India.
Email id: rajaramvijayalakshmi@gmail.com

Received 

: 18.05.2020

Accepted 

: 05.06.2020

Published 

: 27.06.2020

REVIEW ARTICLE


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

51

Dhwani et al: An overview of Socket Preservation 

INTRODUCTION:

 

The periodontium includes gingiva, 

connective tissue, cementum, periodontal ligament 

and alveolar bone. The alveolar bone consists of 

cortical bone, cancellous trabeculae, and the alveolar 

bone proper. After the extraction of teeth, there is 

resorption of the alveolar ridge resulting in its loss 

of height and width, creating a potential esthetic 

problem for prosthetic or implant dentistry. The 

severity of the healing pattern of the extraction socket 

may pose a problem for the clinician in 2 ways: it 

creates an esthetic problem in the fabrication of an 

implant-supported restoration or a conventional 

prosthesis; and it may make the placement of an 

implant challenging if not unfeasible. An average of 

40% - 60% of original height and width is expected 

to be lost after tooth extraction with the greatest loss 

happening within the first two years.

1

What is Socket Preservation ?

 

The challenge for the dentist is to preserve 

the quantity and quality of the gingival and osseous 

tissues lead to the evolution of Socket preservation 

or alveolar ridge preservation (ARP) (Fig 1). It is a 

procedure to reduce bone loss after tooth extraction 

to preserve the dental alveolus in the alveolar bone. 

It  was  first  described  by  Greenstein  and  Ashman 

and Bruins in 1985.  The term socket preservation 

was first coined by Cohen in 1988 for a procedure 

designed for prosthetic socket maintenance, ridge 

preservation and ridge augmentation. 

Fig 1: Socket Preservation

CLASSIFICATION:

According to Elian et al

 2 

(Fig 2)

:

•  Type I socket: The facial soft tissue and buccal 

plate of bone are at normal levels in relation to 

the cementoenamel junction of the pre-extracted 

tooth and remain intact post-extraction. Easiest 

and most predictable to treat.

•  Type II socket: Facial soft tissue is present but 

the buccal plate is partially missing following 

extraction of the tooth. They are most difficult 

to diagnose.

•  Type III socket: The facial soft tissue and the 

buccal plate of bone are both markedly reduced 

after tooth extraction. They are very difficult to 

treat and require soft tissue augmentation with 

grafts in a staged approach to rebuild lost tissue.

 

Fig 2: Elian classification of sockets 

Chaar et al classification 

3

 :

 

This  classification  of  extraction  sockets 

focuses on the bone topography of the extraction 

socket. The protocol for treatment of each socket type 

takes into account the shape of the remaining bone, 

the biotype and the location of the socket whether it 

be in the mandible or maxilla (Box1).

Box 1 : Classification and Treatment Protocol


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

52

Dhwani et al: An overview of Socket Preservation 

Grade I:

 

Grade  I  sockets  are  most  ideal.  It  had  an 

intact buccal plate, adequate interproximal bone and 

satisfactory apical topography. There is an intact 

buccal  plate  having  no  fissures  or  dehiscence  and 

less than 25% loss of height (Fig 3).

   

Fig 3: Chaar classification of socket

Grade II:

             Grade II sockets are differentiated from Grade 

I by the amount and quality of the remaining buccal 

plate. A grade II socket has a fissure, dehiscence, or 

deficiency of the buccal plate totalling a 25% to 50% 

loss.

 

 

   

Grade III:

                Grade III sockets are the most deficient 

and include any socket with inadequate apical 

topography, insufficient interproximal bone, or more 

than 50% loss of buccal plate. 

    

PROCEDURES TO BE OBSERVED TO 

PRESERVE THE ALVEOLAR SOCKET:

TOOTH EXTRACTION:

 

Atraumatic extraction techniques should be 

used to minimize damage to the alveolar bone during 

tooth extraction. The Easy-X-tractor (Fig 4) is a 

device designed to extract single-rooted teeth with 

minimal trauma and does not require flap elevation.

 

If the tooth structure is too broken down, the 

roots can be carefully sectioned into fragments and 

extracted without placing pressure on the alveolus. 

Once the tooth is extracted, the alveolus should be 

thoroughly debrided, removing all of the granulation 

tissue. 

Fig

 4: Easy-X-tractor used for extraction

FLAP DESIGN:

 

The extraction of a tooth results in a decrease 

in height of the papillae. The loss of papillae height 

is increased with the elevation of buccal and lingual 

flaps.

4

 In areas of esthetic concern, consideration 

should be given to extracting the tooth and 

augmenting the socket without elevating a flap or the 

use of a mini-flap on the buccal side  preserving the 

papillae (Fig 5).

.

 

Fig 5: 

Flap elevation 

POST-OPERATIVE MANAGEMENT:

 

The most important step in the post-operative 

management of augmented extraction sockets is the 

placement and shaping of the temporary tooth that is 

placed over the extraction area. The loss of papillae 

height from extraction can be largely restored with 

the use of removable or fixed provisional appliances.


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

53

Dhwani et al: An overview of Socket Preservation 

HEALING PATTERN OF SOCKET 

ALVEOLUS:

 

Residual ridge remodelling, begins with a 

cascade of  inflammatory reactions that is  activated 

immediately after tooth extraction.

 

Healing of extraction sockets can be explained 

in five different stages (Fig 6).

5

Fig

 6: Healing pattern of socket alveolus

GRANULATION STAGE:

 

The granulation stage lasts around five days. 

The  early  granulation  tissue  first  appears  at  the 

bottom of the socket and spreads laterally, up the 

socket walls.

ANGIOGENIC STAGE:

 

The second phase, the initial angiogenic 

stage, happens within the first week of granulation 

stage. New trabeculae have begun to appear at the 

bottom of the socket, and the blood clot in the center 

has begun to shrink.

NEW BONE FORMATION STAGE:

 

The third phase begins two weeks after the 

tooth extraction. Sinusoid formations that began in 

the earlier phases yield bone trabeculae. At this point 

osteoid, can be detected. The bone formation follows 

the pattern of the sinusoid formations, which have 

mostly formed vertically starting in the apical region.

BONE GROWTH STAGE:

 

The bone growth stage which is characterized 

by well developed, thickened trabeculae that now 

fill  2/3rds  of  the  socket.  This  happens  4-5  weeks 

after extraction. This woven bone is referred to as 

spongiosa. Some sinusoids are still forming in the 

coronal portion of the socket, while the apical portion 

appears to be more mature with less sinusoids.

BONE REORGANIZATION STAGE:

 

The  final  stage  is  the  bone  reorganization 

stage which is usually evident around six weeks after 

extraction. The primary spongiosa now develops into 

secondary spongiosa, or more lamellar bone, and is 

present in higher percentages towards the apical end 

of the residual socket.

TECHNIQUES FOR SOCKET 

PRESERVATION:

 

The techniques available today are based on 

the principles of guided bone regeneration, which 

have been used in periodontal regeneration since 

1982.

6

 The technique consists of isolating a bony 

space, in this case an extraction socket with a barrier 

membrane, to exclude the epithelial cells and thereby 

have the space filled with bone. The use of a bone 

replacement graft alone results in some preservation 

of alveolar height and width but less than with a 

barrier membrane. 

MATERIALS USED FOR SOCKET 

PRESERVATION:

 

Guided Bone Regeneration (GBR) techniques 

utilize barrier membranes to refrain gingival cells 

from penetrating into the defect to be regenerated 

(Fig 7). There are numerous barrier membranes 

available today for guided bone regeneration.

Fig 7: Socket preservation using bone grafts and 

GTR membrane


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

54

Dhwani et al: An overview of Socket Preservation 

GTR MEMBRANES:

 

They can be either resorbable or non-

resorbable membranes.

 NON RESORBABLE MEMBRANES:

 

Non-resorbable  membranes  were  the  first 

devices approved for clinical use. Non-resorbable 

membranes require a second surgical procedure 

for removal. The need for additional surgery is 

accompanied by concerns over patient acceptance, 

time, cost, and possible morbidity associated with 

any surgical procedure.

 

Nyman and colleagues initially used a 

membrane constructed from Millipore® (cellulose 

acetate) filters.

7

 

Polytetrafluoroethylene  is  a  fluorocarbon 

polymer with exceptional inertness and 

biocompatibility. 

 

Teflon®,  an  expanded  polytetrafluoro-

ethylene (e-PTFE) membrane consists of 2 parts: 

a collar portion, having open pores to allow in-

growth of connective tissue and to prevent epithelial 

migration; and an occlusive portion, preventing the 

flap tissues from coming into contact with the root 

surface.

 

The Gore-Tex expanded polytetrafluoroethylene 

periodontal device features two structural designs to 

address specific needs. An open microstructure collar, 

corresponding to the coronal aspect of the device, to 

promote connective tissue in-growth and to support 

wound stability and inhibit epithelial migration.

8

 

The remainder of the device is a partially occlusive, 

structurally relatively stable membrane serving to 

provide a space for regeneration as well as a barrier 

towards gingival flap tissue invasion or collapse onto 

the root surface. 

 

The Gore-Tex expanded  polytetrafluoroethylene 

membrane has been modified by incorporation of 

titanium reinforcements. The titanium reinforcement 

is set between two layers of expanded polytetra-

fluoroethylene, resulting in a device with identical  

surface properties and improved mechanical strength.

 

Use of a resin-ionomer barrier has excellent 

space-making properties; however, it could be 

difficult to fabricate in-situ.

 

A  rubber  dam  offers  little  rigidity  to  assure 

space maintenance, can be tedious to manipulate, 

and exhibits no tissue integration.

 

A composite non-absorbable device made out 

of knitted nylon fabric mechanically bonded onto a 

semipermeable silicone membrane and coated with 

collagen peptides (Bio Brane) has also been used.

RESORBABLE MEMBRANES:

 

Resorbable membranes do not require 

additional surgery for removal, which reduces patient 

discomfort, chair-side time and related cost, while 

eliminating potential surgery-related morbidity.

A. Natural products:

 

Collagen is the principal component of 

connective tissue and provides structural support for 

tissues throughout the body. It possesses the ability 

to stimulate platelet attachment and to enhance fibrin 

linkage, which may assist initial clot formation and 

stabilization, leading to enhanced regeneration.

9

 

A type I collagen guided tissue regeneration 

membrane derived from bovine deep flexor (Achilles) 

tendon is widely used.

 

Another type I collagen membrane 

derived from calf pericardium and cross-linked by 

diphenylphosphorylazide has been evaluated for 

guided tissue regeneration. Other natural products 

tested as guided tissue regeneration devices include 

duramater, cargile membrane, oxidized cellulose and 

laminar bone.

 B. Synthetic products:

  Synthetic absorbable devices most 

commonly used are poly-a-hydroxy acids, which 

include polylactic acid, polyglyco1ic acid, and their 

copolymer, polyglycolide-lactide. 

 

A double-layered absorbable device 

(GUIDOR) made of polylactic acid and a citric acid 

ester was the first to gain FDA approval.


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

55

Dhwani et al: An overview of Socket Preservation 

 

Another synthetic absorbable device 

(RESOLUT) is a composite consisting of an occlusive 

membrane of glycolide and lactide copolymer and a 

porous web structure of bonded polyglycolide fiber.

Fiber of polyglactin 910, a copolymer of glycolide 

and L-lactide (90/10 molar ratio), is used to prepare 

a tightly woven mesh (VICRYL Periodontal Mesh).

The ATRISORB barrier is the only approved guided 

tissue regeneration device to be manufactured 

chairside.

Acellular dermal matrix (ADM) is derived from 

human donor skin tissue.

10

 It is commercially 

available from tissue banks sanctioned by the 

American Association of Tissue Banks (AATB).

GUIDED BONE REGENERATION:

The PASS principle: 

P- Primary wound closure 

A- Angiogenesis 

S- Space maintenance 

S- Stabilization 

remains a cornerstone for successful guided bone 

regeneration.

TYPES OF BONE GRAFTS:

 

The 4 types of grafts being used are autografts, 

allografts, xenografts and alloplasts.

AUTOGRAFTS:

 

Autografts are taken from one part of a 

patient’s body and transferred to another. The basis 

for current periodontal bone grafting procedures can 

be traced to Nabers and O’Leary in 1965.

 

Osseous coagulum is obtained by using rotary 

instruments on intra-oral bone in the surgical site and 

then mixing the particles of bone with the patient’s 

blood.

 

Bone blend is cortical or cancellous intra-

oral bone that is obtained with a trephine, chisel 

or rongeur. It is placed in an amalgam capsule and 

triturated into particle size in the range of 100 to 200 

µm.

 

Autografts can be either extra-oral or intra-

oral in origin.

A) EXTRA – ORAL AUTOGRAFT:

 

Autografts of iliac cancellous bone and 

marrow offer the greatest potential for induction of 

new bone in the periodontium.

 

Iliac bone marrow autografts (Fig 8) have 

proven to be the most predictable graft materials for 

bone growth. However, they are no longer popular. 

Complications associated with the use of fresh iliac 

bone marrow include root resorption and ankylosis, 

in regards to bone grafting around teeth.

11

Fig 8: Iliac bone marrow autograft 

B) INTRA ORAL AUTOGRAFTS:

 

Intra oral autografts have been harvested 

from various intra-oral sites including edentulous 

ridges, the maxillary tuberosity, post- extraction 

healing sites and tori or exostoses.

 ALLOGRAFTS:

 

They consist of tissue transferred from one 

individual to another genetically dissimilar individual 

of the same species.

 

These grafts can be categorized as 

demineralized frozen or freeze-dried bone allograft 

(dFDBA) or mineralized frozen or freeze-dried bone 

allograft (FDBA). FDBA provides an osteoconductive 

scaffold  and  elicits  slower  resorption  than  dFDBA 

when implanted in mesenchymal tissues.

12

XENOGRAFTS :

 

They are tissue grafts transferred from one 

species to a different species. It has been observed 

in some short-term studies that while the placement 


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

56

Dhwani et al: An overview of Socket Preservation 

of biomaterial in alveolar sockets may promote bone 

formation and ridge preservation, the graft may also 

delay healing.

ALLOPLASTS:

 

Alloplastic bone substitutes like calcium 

sulfate, bioactive glass and polymers are used.

13

 

The Bio-Col technique involves the placement 

of Deproteinized Bovine Bone Matrix (DBBM) 

particles in the extraction socket and then covered 

with a collagen plug or membrane sutured into place.

RECENT TRENDS:

•  Novel tissue engineering therapies have been 

developed including the delivery of growth factors 

incorporated in carriers, the stimulation of the 

selective production of growth factors using gene 

therapy, and the delivery of expanded cellular 

constructs.

•  The use of rhBMP-2 absorbed in a collagen 

sponge for alveolar ridge preservation after tooth 

extraction was published in 1997.

14

•  PDGF-BB in a β-TCP carrier is a material accepted 

from the FDA for regeneration of bone and PDL in 

guided tissue regeneration procedures.

15

•  One of the naturally obtained membrane for socket 

preservation is platelet-rich fibrin (PRF). Platelet-

rich  fibrin  (PRF)  is  the  second  generation  of 

platelet concentrates.

•  More recently, tissue repair cells (TRC), a cell 

construct derived from each patient’s bone marrow 

and cultivated using automated bioreactors to 

concentrations not achievable through a simple 

bone marrow aspiration, were evaluated in socket 

healing.

16

CONCLUSION:

“ The future lies in preserving the past.” 

- Peter Westbrook

 

Bone resorption after tooth extraction 

averages about 3-5 mm in a period of 6 months.

Socket  preservation  procedures  are  effective  in 

limiting horizontal and vertical ridge alteration 

following tooth extraction. The use of barrier 

membranes alone might improve normal wound 

healing in extraction sites. The reduction in bone 

resorption averages upto 2-4 mm in width of the 

alveolar bone with the help of socket preservation. 

Hence  this  technique  along  with  the  help  of  GTR 

and GBR is very effective in preserving the alveolar 

socket.

FINANCIAL  SUPPORT AND 

SPONSORSHIP:

Nil

CONFLICTS OF INTEREST:

There are no conflicts of interest.

REFERENCES:

1. 

Caneva M, Botticelli D, Salata LA, SouzaSL, 

Bressan  E,  Lang  NP.  Flap  vs  flapless 

surgical approach at immediate implants: A 

histomorphometric study in dogs. Clin Oral 

Implants Res 2010;21:1314-1319.

2. 

Juodzbalys  G.  Instrument  for  extraction 

socket measurement in immediate implant 

installation. Clin Oral Implants Res 

2003;14(2):144-149.

3. 

El EC, Oshman S, Fallah PA. Single-

rooted  extraction  sockets:  Classification 

and treatment protocol. Compendium 

of continuing education in dentistry 

2016;37(8):537-541.

4. 

Douglass  G.  Alveolar  ridge  preservation 

at tooth extraction. J Calif Dent Assoc 

2005;33:223-231.

5. 

Ohta Y. Comparative changes in 

microvasculature and bone during healing of 

implant and extraction sites. J Oral Implantol 

1993;19(3):184-198.

6. 

Nyman S. New attachment following surgical 

treatment of human periodontal diseases. J 

Clin Periodont 1982;9:290-296.

7. 

Scantlebury TV. A decade of technology 

development for guided tissue regeneration. 

J Periodontol  1993;64:1129-1137.

8. 

Hardwick R, Hayes BK, Flynn C. Devices 

for dentoalveolar regeneration: An upto date 

literature review. J Periodontol 1995;66:495-

505.

9. 

Nevins ML, Camelo M, Schupbach P, Kim 


background image

JIDAM/Chennai/Volume:7/Issue:2/Pages 50 - 57/April-Jun 2020

57

Dhwani et al: An overview of Socket Preservation 

DM,  Camelo JM and Nevins M. Human 

histologic evaluation of mineralized collagen 

bone substitute and recombinant platelet-

derived growth factor-bb to create bone 

for implant placement in extraction socket 

defects at 4 and 6 months: A case series. Int J 

Periodont Rest Dent 2009;29:129-139.

10.  Luczyszyn SM, Papalexiou V, Novaes AB, 

Grisi  MFM,  Souza  SLS,  Taba  M. Acellular 

dermal matrix and hydroxyapatite in 

prevention of ridge deformities after tooth 

extraction. Implant Dent 2005;14(2):176-184.

11. 

Schallhorn  RG.  Post-operative  problems 

associated with iliac transplants. J Periodontol 

1972;43(1):3-9.

12.  Committee on research, science and therapy 

of the American Academy of Periodontology. 

Tissue banking of bone allografts used in 

periodontal regeneration. J Periodontol 

2001;72(6):834-838.

13.  Froum S, Orlowski W. Ridge preservation 

utilizing an alloplast prior to implant 

placement: Clinical and histological case 

reports. Pract Periodontics Aesthet Dent 

2000;12(4):393-402.

14.  Cochran DL, Jones AA, Lilly LC, Fiorellini 

JP  and  Howell H. Evaluation of recombinant 

human bone morphogenetic protein-2 in oral 

applications including the use of endosseous 

implants: 3-year results of a pilot study in 

humans. J Periodontol 2000;71:1241-1257. 

15.  Kaigler  D,  Pagni  G,  Park  CH,  Tarle  SA, 

Bartel RL  and  Giannobile WV. Angiogenic 

and osteogenic potential of bone repair cells 

for craniofacial regeneration. Tissue Eng 

2010;16:2809-2820.

16.  Zhang Y, Ruan Z, Shen M, Tan L, Huang W, 

Wang L et al. Clinical effect of platelet-rich 

fibrin on the preservation of the alveolar ridge 

following tooth extraction. Exp Ther Med 

2018;15(3):2277-2286.